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The firehose instability of Alfven waves in an anisotropic rarefied plasma is studied 
by analytical and effective numerical methods. 

It is known that the Alfven waves propagating along the static magnetic field H, 
direction in anisotropic high /I plasmas are unstable when p,, > pL + Ho2/4n-, 
wherep ,, andp, are the plasma pressures parallel and perpendicular to the magnetic 
field, respectively [l, 21. This criterion is de&red by macroscopic parameters of the 
plasma; hence, it is natural to expect that the firehose instability will be described 
adequately by hydrodynamic-type equations. In such a consideration it must be 
assumed, of course, that characteristic wavelengths are much longer than the 
ion cyclotron radius (KR < 1); otherwise, any hydrodynamical model of plasmas 
fails. 

Chew, Goldberger, and Low’s (CGL) model [3] and the modifications accounting 
for the finite cyclotron radius (FCR) [4-61, are often used to describe rarefied 
anisotropic plasma. Sagdeev and Kennel [2] have considered the Alfven turbulence 
connected with destabilization of Alfven waves by the firehose instability as a shock 
dissipation mechanism for solar wind. Sagdeev and Berezin [7] have considered 
a nonlinear model of the instability with the FCR and found an analytical solution 
in the form of a monochromatic wave with circular polarization. Berezin [8] 
derived the equations for the case of small, but finite, amplitudes and showed that 
the solutions describing unstable Alfven waves are similar for plasmas with 
different parameters. To solve the firehose instability problem with general initial 
conditions is, at present, out of the question. This work is devoted to designing 
numerical methods for solving this problem. 

1. FORMULATION 

The equations for the transverse Alfven waves in the absence of longitudinal 
motion can be written as 
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Ho& HoHz 
PJF-T- 9-l (pl + ‘Ii Hap’ H$) ;I = 0 

Ho& Hoff, 
PA) HZ -r + Q-1 (p, + ” Hz” H$) 21 = 0 

aH, =H,g $i= HE 
(1) 

at O az 

; (P,,H~ = 0 $ (PJH) = 0. 

Here the axis Z is directed along the static magnetic field Ho, where u, v are the 
x, y components of velocity, Hz = Ha2 + Hg2 + Ho2, p = const is the plasma 
density, and Sz = eHo/mic, R = Sz-l( p ,,/p)l/$ is the ion cyclotron radius. The 
terms connected with 9-l describe the magnetic viscosity. 

If our problem is considered as a periodic one with period L, then we can obtain 
the following conservation law 

lL @(u” -I- v2)/2 -t (1/2)p,, + pI + H”/Sr) dz = i’ Q(z, t) dz = const. 

The density of total energy Q(z, t), consists of densities of kinetic p((u2 + v3/2), 
internal UP) P ,, + pL , and magnetic Ho2/8r energy. In an isotropic gas, the 
density of internal energy is defined as z = p/(y - l), y = (m + 2)/m, where m is 
the number of degrees of freedom. In the case of an anisotropic plasma, the 
motion of particles along the magnetic field can be considered as one-dimensional 
with m = 1, y = 3 and that perpendicular to the magnetic field as two-dimensional 
with m = 2, y = 2. Therefore, the internal energy per unit mass connected with 
longitudinal motion is equal to p ,,/2 and with transverse motion pI . 

Linear analysis yields 

WK = W(K) + iyK , 

dK’ = QK2R2/2, 

YK = Wdp - (l/4) P ,, K2R2YpY2, 

where Ap = p,, - pI - Ho2J4r is the degree of plasma anisotropy. We show 
that the Alfven waves of small amplitudes are unstable when 

P,, > PI •k Ho214773 
KR < 2(Ap/~,,)l’~. 

Since the hydrodynamical approach is valid for waves with KR < 1, the firehose 
instability can be described by hydrodynamic-type equations when the plasma 
anisotropy is small (Ap < p ,,). 
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It has been shown [8] that for waves of small but finite amplitudes, the model set 
of equations 

$+;[(l -H12)H-gg =o 

g +; [(l - H,2)B + $1 = 0 

aH au aB ati 
at=az at=az HL2 = H2 + B2 

(2) 

can be derived by transforming to new variables 

t’= !iLk.dp, 
P II 

z’ = pt (p L4py2 z, 

u’, z” = WP)(P@P,, - P&w2 % 0, 

H’, B’ = ((2~ ,, - PJWP)“‘” H, B, 

H = WH, , B = H,IH,, 

(primes have been omitted). 
Equations (2) do not contain any parameters of the plasma state ( p ,, , pI , H,,), 

and all solutions for different p,, , pI , Ho will be similar. The set (2) is a very 
interesting one from a mathematical point of view. 

If the problem is periodic with period L, then we can write the following 
conservation law: 

IL Q,<z, t) dz = j-’ Q,k 0) dz, 

Ql =” (u” + v3/2 + (ii2 + B2 - 1)2/4 
(3) 

2. STUDY OF MODEL EQUATIONS 

Any stationary solution of the set (2) has the formf = (u, V, H, B) = fi = const. 
Linear analysis yields 

wK = (l/2) K4 - (1 - 2CB2 F ((B2 + K2)2 - (1 + 3K2/4) K2)‘/2) K2, 

g2 = HI2 + B12, 

and it is necessary for reality of oK (that is, for stability of the waves with wave- 
number K) to have 

(9” + K2)2 - (1 - 3K2/4) K2 > 0 
K2/2 - 1 + 2B2 3 0 
1 - 492 + 394 3 0. 
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The results of analysis of these conditions are represented in Fig. 1, where the 
dashed line shows the region of stability. When SS2 = 1, the disturbances of any 
wavelength are stable. The other region of stability is limited by a part of the curve 
9(K2 + 2/3)2 - 12(.CB2 + K2)2 = 4 between the points (2, 0), ((2/3)112, l/3), and a 
part of the line 9 = 1/31j2. In Fig. 2 the dependence of yK on the wavenumber K 
for different values of the transverse magnetic field 0 < z?B < 1/3112 is represented. 

FIGURE 1 

FIGURE 2 
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The regions of instability and maximum increment decrease with an increasing value 
of 9. In the case of propagation along the magnetic field (LB = 0), we have 
yK = K(1 - K2/4)lj2. When B = 1/31i2, we have YK = K(2/3 - K2)l12 and 
y = ymax = l/3 at K = 1/31j2. In the region l/3 < S2 < 1, all the waves are 
unstable. 

According to [7, 81, sets (1) and (2) have partial analytical solutions: 

H(z, t) = A(t) sin(Kz + p(t)) 

B(z, t) = A(t) cos(Kz + (p(t)) 
u(z, t) = (l/K)[A@ sin(Kz + y(t)) - A cos(Kz + v(t))] 

(4) 

D(Z, t) = (l/K)[A sin(Kz + v(t)) + A+ cos(Kz + cp(t))]. 

In the case of the model set (2), we have the following equations for the amplitude 
A(t) and phase q(t): 

A2 + U(A) = E = const 

+(t) = -(l/2) K2 + C/A2(t) 

U(A) = (l/2) K2A2(A2 + (l/2) K2 - 2) + C2/A2 (5) 
E = A,z + (l/2) K”A2(A,,” + (l/2) K2 - 2) + P/A, 

C = Ao2(yX0) + (l/2) K’), 

where A,, is an initial amplitude, A,, = (dA/dt)l,=, . The case C = 0 and q(t) = 
-K2t/2 have been considered in [8]. The functions U(A) at different values of C 
and K = 2112 are represented in Fig. 3, from which one can conclude that the 
amplitude of the wave (4) changes periodically with time. If the initial conditions 
A,, , A,, , +(O) are given, minimum Amin and maximum A,, can be determined 
from the equation U(Aextr) = E. In Fig. 4, the dependence of Amin , A,, on C 
and E is represented (K = 2112). The maximum amplitude increases together with 
the value of C (given the initial amplitude A,, , the growth of the value of C means 
the growth of the initial wave frequency q(O)). When C > 1, one can obtain the 
following asymptotic relation: A,, N C1j2. The solution of the set (5) with the 
initial conditions 

u(z, 0) = (l/K)(A,&, sin Kz - A, cos Kz) 

z&z, 0) = (l/K)(A&, cos Kz + A, sin Kz) (6) 
H(z, 0) = A,, sin Kz B(z, 0) = A, cos Kz 

can be expressed by elliptic functions and analyzed qualitatively. However, for a 
quantitive description of the solution, it was easier to use some numerical, high- 
accuracy method (for example, Runge-Kutta’s or Adams’) which showed the 
coincidence of the solutions obtained by calculation of the elliptic functions and 
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those by Runge-Kutta’s method. As follows from Table II, the integration step 
T = 1O-2 is su%cient for the definition of even the most quickly increasing solution 
with yk = ymax (k = 2l/3 since decreasing the steps fivefold does not lead to 
changes of the solution. 

FIGURE 3 

! 
A,,, 
A mi. 

k =v-i- 

FIGURE 4 

Figure 5 shows such solutions for C = 0 and C = 0.1. As mentioned earlier, 
numerical methods must be used for the solution of (2) with arbitrary initial 
conditions. We shall use the solutions (Fig. 5) for a comparison of the finite- 
difference schemes, as described below. 
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HiI 
lC=d.T A.=oi A.=&A. 

FIGURE 5 

3. NUMERICAL METHODS FOR THE MODEL SET 

For the sake of convenience we repeat the formulation of the problem. It is 
necessary to find a solution of the set (2) in the region (0 < z < L, 0 < t < T} 
satisfying the periodic boundary conditions 

f@, 0 = f(-L t> 

and the more or less arbitrary initial conditions 

(7) 

f(z, 0) = f”(z). 

(1) Spectral Method 

Let us choose as a basis the complete set of functions exp(imwz), w  = 2?r/L, 
m = 0, fl, f2,... satisfying the boundary conditions (7). Using Fourier trans- 
formation for the space coordinate z, we obtain the following system of ordinary 
nonlinear equations 

(du,,Jdt) = -iomH,,, + o.Pm%, + iwm c Hn(Hn~Hn- + &a~&~) 
n+n’+n”=m 

(dv,,,/dt) = -iwmB,,, - w2m2u,,, + iwm C &(H,*Hn~ + &a~&~) (8) 
n+n’+n’=m 

(dH,ldt) = iwmu, 
(dB,,Jdt) = iumv, 
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with the initial conditions 

f”(z) = f f*(O) exp(imw2). 
*=-cc 

In order to solve Eqs. (8) with a finite number of harmonics j m 1 < N, one may 
use any method of high accuracy, for example, Runge-Kutta’s or Adams’. How- 
ever, there is the difficulty that a direct evaluation of the sums 

Rm = c c c &BnG-, 12 + ~1’ + 12” = m 
IIZI<N In’[<N In”1<N 

is too inefficient. We have made a generalization of Orszag’s method for double 
nonlocal sums [9] and obtained the following formula: 

(a) Fourier transformation of the values H, , B, : 

N-l 

R(j) = C HmeimXj 
N-l 

6(j) = C B,eimej 
W&=-N *z--N 

N-l N-l 
,$(j) = c Hmeimrj+l/3 &(j) = C BmeimsjclJ3 

*=-N W&=-N 

N-l N-l 
j$j) = c Hmeims5+W g(j) = c Bmeimrj+W, 

*z--N W&=-N 

where 

H-N = B-N = 0, xj = njIN, ~f+ll3 = 4-i + 1/3)/N, 

xS!-2/3 = 4-i + 2/3)ix j = 0, l,..., 2N - 1, 

(b) Multiplication: 

Xi> = &)(~2W + 62(j)) B(j) = &M2(j) + J2(j>> 

d(j) = Nj><~2(j> + J22(j)) P(j) = &><~2<j> + 12(j)) 

F(j) = fi(M2(j) + 62(j)) q(j) = 6(j)(Ji2( j) + h"(j)). 

(c) Inverse Fourier transformation: 

Qm = & ‘z d(j) eeimrj, 

the expressions pm , sna , P, , and em are defined similarly. 
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(d) Evaluation of the triple sums: 

pm = g[p, + e-i(nm/(3N))~m + e-i(2nm/(3N))Pm] 

Qm = ;[(& + +1m/(3lv))&~ + e--i(2nm/(3NHQm], 

where 
Pm = c c c H,,(Hn~Hn- + &c&z”) 

jnl<N in’l<N In”l<N 
q-n’ +n”=m 

Qm = 1 2 c &(&Hn- + &,B,*). 
Inl<N In’l<N ln”l<N n+n’+n’=m 

In the algorithm just considered, it is necessary to compute the values 

N-l 

d(j) = c A&P, 

WL=-N 

w = exp(ir/N), and j = 0, l,..., 2N - 1, for which one must make 4N2 multiplica- 
tions. The number can be reduced if one uses the fast Fourier transform algorithm 
[lo]. In our case, choosing N = 2’, we obtain 16N(3r + 5) multiplications for 
computing Pm , Q,,, , instead of 4 (2N - 1)2 multiplications at the direct calcula- 
tions Pm, Qm . 

(2) Finite-Difference Schemes 

In order to choose the best difference scheme for solving the problem (2), (6) we 
have made a comparison of some schemes according to the following characteris- 
tics: instability region, values of growth rates, energy conservation, and deviation 
from the exact solution. 

(a) Explicit scheme with accuracy O(T, h2). 

,;+1 = uj” - ~{fl,(aH); - &I,“} 

,;+1 = vin - +l,(aB); + A,,u;+‘} 

Hjn+::z = Hjn,,,, + n’Luin,::2 

Bin+::2 = Bin,,,, + 4vjn,:l/, , 

a = 1 - H2 - B2, 4.h = h-Yh+m -h-d, 

4lfj = h-Yh,, - 2fi +&I, j = 0, I)..,) Iv. 

This scheme is similar to that described in [I l] for the linear equation of elastic 
vibrations. 
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(b) Implicit scheme with accuracy O(7, h2). 

,y+1 = Ujn - T{Al(U”H”+l)j - AllU~“} 

,;+1 = vjn - T{A,(anBn+l)j + A&“} 

Hi!;, = Hi",,,, i- 4ui=::2 

Bjn+:li2 = Bj",,,, + 744%2 . 

This scheme may be realized by cyclic matrix sweeping. 

(c) Predictor-corrector I with accuracy O(T~, h2). 

n+1/2 UT+’ = ujn - T{A&H);+~‘~ - Alluj } 

,jn+l = vjn - ~{/‘l~(aB);+~‘~ + Allu;+1’2) 

Hj”,::, = GLt2 + 4$i+A~ 

By!?, = Bin-l/2 + 4G;t. 

(d) Predictor-corrector II with accuracy O(T~, h2). This scheme is a modifica- 
tion of scheme (c) with the same predictor and the following corrector: 

an+'+ an ~n+1/2 WA +I2 

2 llV3 
j 

,;+1 = vjn - T A, I ( 
an+l + an 

2 
B"+1/2 

1 

+ (111ujn+1/2 

j 
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(e) Iterative scheme. 

91 

and the same for the functions Hj’$$;+l, Bjn,y;+l. Here s is the iteration number 

f n+1.0 - -f”. 

(3) Finite-Difference Instability Regions and Growth Rates 

Linear analysis of the schemes described above yields the following expressions 
for the growth rates: 

(a) Explicit scheme. 

#(T, h) = K(1 - K2/4)l’” [l + K2(K2 - 1) ?/24]. 

(b) Implicit scheme. 

#(T, h) = K(1 - fc2/4)“’ + K2(1 - K2/2) 7/2 

(c) Predictor-corrector and iterative schemes. 

#(T, h) = K(1 - K2/4)1’2 [l - K2(K2 - 1) ~~/12], 

where K = (2/h) sin(Kh/2). 

In Table I the values of the finite-difference and differential growth rates are 
represented by (T = 10p2, h = 0.11). The best scheme is an iterative one. 

TABLE I 

k 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Yk 0.198997 0.391918 0.572364 0.733212 0.866025 0.960000 0.999800 0.960000 0.784602 

y;“(~,h) 0.198993 0.391887 0.572268 0.733016 0.865729 0.959691 0.999766 0.960991 0.788854 

yV’(~,h) 0.199190 0.392625 0.573748 0.735198 0.868228 0.961689 0.999910 0.957315 0.778717 

yi3’(3’(r,h) 0.198994 0.391888 0.572269 0.733018 0.865729 0.959684 0.999743 0.960943 0.788783 
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(4) Comparison with the Exact Solution and Energy Conservation. 

We consider the solution of Eqs. (5) obtained by fourth-order Runge-Kutta’s 
or Adams’ method as an “exact” solution. With our difference schemes, we obtain 
the numerical solution of Eqs. (2) with initial conditions (6) and make a comparison 
of the average square magnetic field: 

(Hoyt”)) = N-1 2 [(f&y + (Bj”)2] 
j=l 

with the value AZ(P) = Hz(P) + B2(tn). In Table II the time dependence of the 
values AZ(t) and (HL2(t)) for the case of K = 21j2, A, = 0.1, r+(O) = -K2/2 is 
represented, For the explicit and implicit schemes the time step was T = 5 x 10-3; 
for the predictor-corrector and iterative schemes the step was T = 10-3; the space 
mesh was h = 0.11; the iterative parameter was E = 10-5. Explicit and implicit 
schemes reproduce the exact solution for approximately a half-period of A2(t). 
After that, the numerical solution does not coincide with the exact solution. This 
effect is connected with the nonsymmetric explicit scheme. As the computations 
show, predictor-corrector and iterative schemes reproduce the exact solution very 
well. 

The finite-difference analog of energy (3) has the following form 

W” = h f {$[(z+~)~ + (vj”)“] + $[l - (Hj”,,,2)2 - (Bj”,,,2)2]2}. 
j=l 

After some algebra we obtain ( Wyn+l - W” )/T = O(T), for the explicit and implicit 
schemes; 

(Wn+l- W" )/T = O(T~), for the predictor-corrector scheme, and W”+l = Wn, 

for the iterative scheme (when we have a convergence of iterations). 
In Table III the energy change 

6 W(P) = (W(P) - W(O))/ W(0) 

is given (the parameters were given earlier). 

TABLE III 

Schemes T=2 T=4 T=6 T=8 T= 10 

Explicit 0.235 0.245 0.177 0.161 0.200 
Implicit 0.505 0.513 0.517 0.520 0.522 
Predictor-Corrector I 0.136 x 10e2 0.286 x lo-% 0.485 x 1O-2 0.628 x 1O-2 0.702 x 10-a 
Predictor-Corrector II 0.322 x 10ms 0.541 x lo-$ 0.371 x 10m3 0.411 x 10m3 0.988 x 1O-3 
Iterative 0.399 x lo-’ 0.314 x lo-’ 0.167 x lo-’ 0.500 x 10m8 0.361 x lo-’ 
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(5) Comparison of Spectral and Finite Difference Methods 

For the comparison mentioned above, the calculations were made by both 
spectral and iterative methods. Optimization of the spectral method (with fast 
Fourier transformation) decreases the number of operations needed, even in a case 
of few harmonics, e.g., with N = 25 harmonics we have a gain of 1.5. The use of 
the Adams method for the solution of Eqs. (8) reduces the number of operations 
four fold as compared to the Runge-Kutta method. But even in this case, the 
iterative-difference scheme is faster for the same accuracy. 

4. SOME RESULTS OF CALCULATIONS 

With an iterative scheme, we have examined the temporal evolution both of 
individual harmonics and their random sets with small initial amplitudes. If at the 
moment t = 0, the amplitudes of all the harmonics with the numbers m # m, are 
equal to zero, and the initial functions (u, U, H, B),1 are arbitrary, then the energy 
of the harmonic with a number m, is transfered into the harmonics with numbers 
m = -&(21 + 1) ml , where I= 0, l,.... If the conditions in (6) are chosen as the 
initial conditions, energy remains only in the harmonic with the number m, . The 
maximum transverse magnetic field in such a wave is equal to (HJmax = 
(2 - K2/2)li2 and the kinetic energy is equal to K = +HL2(1 - $HL2). If at the 
initial moment t = 0 the amplitudes of the harmonics with the numbers m, , m2 ,..., 
m, are nonzero, then the energy of these harmonics is transferred into all harmonics 
with the numbers nm, , where m, is the greatest common divisor of the numbers 
3, m2 9-..p ml , and n = fl, &2,.... Gradually, this energy is redistributed over 
the same harmonics. Let a random distribution of all the functions U, v, H, B be 
given at the initial time. During a small time interval, amplitudes of the waves 
corresponding to the wavenumbers K from the domain of instability will grow 
proportionally to exp(y,t). When amplitudes of the harmonics become large 
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FIGURE 7 

FIGURE 8 
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enough, the nonlinear interaction between them begins and as a result, a quasi- 
stationary regime is gradually reached. The mean square of the transverse magnetic 
field (HL2) has random oscillations near some level, which does not depend on the 
distribution of the given initial energy over the harmonics. In Fig. 6, the temporal 
evolution of the mean square of the transverse magnetic field is represented; one 
can see that the level is reached after time t M 2Oy&& . In Fig. 7, the distribution 
of the magnetic field energy density over the harmonics is represented (the dotted 
line represents the distribution at the initial moment and the solid line is for the 
distribution at t = lOOy;&). The calculations indicate that after some finite time 
the first harmonic with maximum wavelength has maximum energy; the remaining 
harmonics have energies about 10-l as large as the energy of the first harmonic. In 
Fig. 8, the temporal evolution of the magnetic energy of the first harmonic with 
the wavenumbers K = 0.283, 0.566, 0.844 is represented. At the initial stage the 
energy of the third harmonic grows more rapidly, since it has the larger linear 
increment. Then, due to nonlinear interaction, the main part of the energy is 
gradually transferred, first to the second harmonic with K = 0.566, and later to 
the first one with K = 0.283. Fig. 9 represents the temporal evolution of Hr2, B12 
for the first harmonic. After some transition time (~40 to 5Oy;&), the values 
periodically change. 
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